186
Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3
Wan, Q., Hongbo, S., Zhaolong, X., Jia, L., Dayong, Z., & Yihong, H., (2017). Salinity
tolerance mechanism of osmotin and osmotin-like proteins: A promising candidate for
enhancing plant salt tolerance. Curr. Genomics, 18(6), 553–556.
Wang, F. W., Wang, M. L., Guo, C., Wang, N., Li, X. W., Chen, H., Dong, Y. Y., et al., (2016a).
Cloning and characterization of a noval betaine aldehyde dehydrogenase gene from Suaeda
corniculata. Genet. Mol. Res., 15, 15027848.
Wang, H., Wang, H., Shao, H., & Tang, X., (2016b). Recent advances in utilizing transcription
factors to improve plant abiotic stress tolerance by transgenic technology. Front Plant Sci.,
7, 67.
Wang, H., Zou, Z., Wang, S., & Gong, M., (2013). Global analysis of transcriptome responses
and gene expression profiles to cold stress of Jatropha curcas L. PLoS One, 8, e82817. doi:
10.1371/journal.pone.0082817.
Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., & Gao, C., (2014). Simultaneous editing
of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery
mildew. Nat. Biotechnol., 32, 947–951. doi: 10.1038/nbt. 2969.
Wani, S. H., Sah, S. K., Hossain, M. A., Kumar, V., & Balachandran, S. M., (2016). Transgenic
approaches for abiotic stress tolerance in crop plants. In: Advances in Plant Breeding
Strategies: Agronomic, Abiotic and Biotic Stress Traits (pp. 345–396). Springer, Cham.
Waqas, M. A., Khan, I., Akhter, M. J., Noor, M. A., & Ashraf, U., (2017). Exogenous application
of plant growth regulators (PGRs) induces chilling tolerance in short-duration hybrid maize.
Environ. Sci. Pollut. Res., 24, 11459–11471. doi: 10.1007/s11356-017-8768-0.
Xia, N., Zhang, G., Liu, X. Y., Deng, L., Cai, G. L., Zhang, Y., Wang, X. J., Zhao, J., Huang, L.
L., & Kang, Z. S., (2010). Characterization of a noval wheat NAC transcription factor gene
involved in defense response against stripe rust pathogen infection and abiotic stresses.
Molecular Biology Reports, 37, 3703–3712.
Zafar, S. A., Noor, M. A., Waqas, M. A., Wang, X., Shaheen, T., & Raza, M., (2018).
Temperature extremes in cotton production and mitigation strategies. In: Past, Present,
and Future Trends in Cotton Breeding (London, UK: IntechOpen). doi: 10.5772/
intechopen.74648.
Zandalinas, S. I., Mittler, R., Balfagón, D., Arbona, V., & Gómez-Cadenas, A., (2018). Plant
adaptations to the combination of drought and high temperatures. Physiol. Plant., 162(1),
2–12.
Zhang, H. Y., Liu, H. M., & Liu, X. Z., (2015b). Production of transgenic kiwifruit plants
harboring the SbtCry1Ac gene. Genet. Mol. Res., 14, 8483–8489.
Zhang, L., Davies, L. J., & Elling, A. A., (2015a). A Meloidogyne incognita effector is
imported into the nucleus and exhibits transcriptional activation activity in planta. Mol.
Plant Pathol., 16(1), 48–60.
Zhang, L., Zhao, H. K., Dong, Q. L., Zhang, Y. Y., Wang, Y. M., Li, H. Y., Xing, G. J., et al.,
(2015c). Genome-wide analysis and expression profiling under heat and drought treatments
of HSP70 gene family in soybean (Glycine max L.). Front Plant Sci., 6, 773.
Zhu, J. K., (2016). Abiotic stress signaling and responses in plants. Cell, 167(2), 313–324.
Zörb, C., Geilfus, C. M., & Dietz, K. J., (2019). Salinity and crop yield. Plant Biol., 21,
31–38. doi: 10.1111/plb.12884.