186

Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3

Wan, Q., Hongbo, S., Zhaolong, X., Jia, L., Dayong, Z., & Yihong, H., (2017). Salinity

tolerance mechanism of osmotin and osmotin-like proteins: A promising candidate for

enhancing plant salt tolerance. Curr. Genomics, 18(6), 553–556.

Wang, F. W., Wang, M. L., Guo, C., Wang, N., Li, X. W., Chen, H., Dong, Y. Y., et al., (2016a).

Cloning and characterization of a noval betaine aldehyde dehydrogenase gene from Suaeda

corniculata. Genet. Mol. Res., 15, 15027848.

Wang, H., Wang, H., Shao, H., & Tang, X., (2016b). Recent advances in utilizing transcription

factors to improve plant abiotic stress tolerance by transgenic technology. Front Plant Sci.,

7, 67.

Wang, H., Zou, Z., Wang, S., & Gong, M., (2013). Global analysis of transcriptome responses

and gene expression profiles to cold stress of Jatropha curcas L. PLoS One, 8, e82817. doi:

10.1371/journal.pone.0082817.

Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., & Gao, C., (2014). Simultaneous editing

of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery

mildew. Nat. Biotechnol., 32, 947–951. doi: 10.1038/nbt. 2969.

Wani, S. H., Sah, S. K., Hossain, M. A., Kumar, V., & Balachandran, S. M., (2016). Transgenic

approaches for abiotic stress tolerance in crop plants. In: Advances in Plant Breeding

Strategies: Agronomic, Abiotic and Biotic Stress Traits (pp. 345–396). Springer, Cham.

Waqas, M. A., Khan, I., Akhter, M. J., Noor, M. A., & Ashraf, U., (2017). Exogenous application

of plant growth regulators (PGRs) induces chilling tolerance in short-duration hybrid maize.

Environ. Sci. Pollut. Res., 24, 11459–11471. doi: 10.1007/s11356-017-8768-0.

Xia, N., Zhang, G., Liu, X. Y., Deng, L., Cai, G. L., Zhang, Y., Wang, X. J., Zhao, J., Huang, L.

L., & Kang, Z. S., (2010). Characterization of a noval wheat NAC transcription factor gene

involved in defense response against stripe rust pathogen infection and abiotic stresses.

Molecular Biology Reports, 37, 3703–3712.

Zafar, S. A., Noor, M. A., Waqas, M. A., Wang, X., Shaheen, T., & Raza, M., (2018).

Temperature extremes in cotton production and mitigation strategies. In: Past, Present,

and Future Trends in Cotton Breeding (London, UK: IntechOpen). doi: 10.5772/

intechopen.74648.

Zandalinas, S. I., Mittler, R., Balfagón, D., Arbona, V., & Gómez-Cadenas, A., (2018). Plant

adaptations to the combination of drought and high temperatures. Physiol. Plant., 162(1),

2–12.

Zhang, H. Y., Liu, H. M., & Liu, X. Z., (2015b). Production of transgenic kiwifruit plants

harboring the SbtCry1Ac gene. Genet. Mol. Res., 14, 8483–8489.

Zhang, L., Davies, L. J., & Elling, A. A., (2015a). A Meloidogyne incognita effector is

imported into the nucleus and exhibits transcriptional activation activity in planta. Mol.

Plant Pathol., 16(1), 48–60.

Zhang, L., Zhao, H. K., Dong, Q. L., Zhang, Y. Y., Wang, Y. M., Li, H. Y., Xing, G. J., et al.,

(2015c). Genome-wide analysis and expression profiling under heat and drought treatments

of HSP70 gene family in soybean (Glycine max L.). Front Plant Sci., 6, 773.

Zhu, J. K., (2016). Abiotic stress signaling and responses in plants. Cell, 167(2), 313–324.

Zörb, C., Geilfus, C. M., & Dietz, K. J., (2019). Salinity and crop yield. Plant Biol., 21,

31–38. doi: 10.1111/plb.12884.